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MP/464 supercomputer!  Hence, we can only suggest that this approach be considered as a
purely theoretical method unless/until more efficient global optimization techniques are devel-
oped.

8.  Conclusions

The molecular conformation problem is a difficult and complex problem.  This paper has pre-
sented an approach that models folding as a two stage process.  The first stage involves a discrete
lattice-type approximation that permits the original continuous model to be formulated as a "zero-
one" quadratic assignment problem, and then further, as a continuous concave quadratic global
minimization problem.  The solution to this first stage is then used as a starting point for a relaxed
continuous local minimization step which, given the correct energy function, should provide an
accurate prediction of the native state of the molecule.
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FIGURE 4.
Lattice Global Minimum Conformer for “United Atom” Butane
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FIGURE 5.
“United Atom” Butane in its Gauche- Conformation
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defined in (EQ 4), which are used to construct the concave function E'(x) defined in (EQ 7), can
be chosen as follows:

where M is a sufficiently large penalty term, and fik(rjl) is the Lennard-Jones pair potential withεik

= 0.06 kcal,σik = 3.6 ang for all i and k.  Notice that the terms in f(y) involvingθ andϕ were not
included in the discrete approximation E(x), since they cannot be modeled as pairwise interac-
tions.

The global, or near global, solution (there were a total of 23 local minima found) to thislattice
restricted problem has an energy of 319.293 kcal with a 3-dimensional configuration as shown in
Figure 4.  The result of this minimization provides the valuesl1 = 1.4 ang,l2 = 1.98 ang,l3 = 2.42
ang,θ2 = θ3 = ϕ3 = 45°, and r14 = 3.43 ang.  This particular lattice restricted result is closest to the
gauche- conformation of butane (see Figure 5), which corresponds to a local minimum of the
energy function, but not the global one (trans is global).  Because of the small size of the lattice
(125 total sites) and the relatively large spacing between lattice points (1.4 ang spacing with all
desired bond lengths of 1.526 ang), the lattice result cannot obtain a minimum energy conformer
without violating some of the desired bond lengths.  In addition, because the lattice used was
only five sites wide in each dimension, and the first two beads were fixed in the center of the lat-
tice, it was not possible to obtain a conformer close to the the globaltrans conformation (this
would require a lattice with a width of at least six sites in one dimension).  As stated at the end of
section 5, this conformer should now be used as a starting point for the local minimization of f(y)
over a continuous domain in 3-dimensional space.  The time to obtain this approximate solution
(the first stage result only) to a very simple example was approximately 25 minutes on a Cray X-
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FIGURE 3.
“United Atom” Butane in its Trans Conformation
l1 = l2 = l3 = 1.526 ang;θ2 = θ3 = 70.5°; ϕ3 = 180°
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The distance between lattice sites sj and sl is given by || sj - sl ||2, so if an assignment of ai to
site sj and ak to site sl is made, then the error in satisfying the specified distanceδik (from the dis-
tance matrix) can be measured by (δik - || sj - sl ||2)2.  Therefore, an assignment is desired such that
the sum of all such terms is minimized.

Let K = { (i,k) : δik > 0 } be the set of all specified distances.  Then the desired assignment is
that which minimizes the quadratic function

where pijkl  = (δik - || sj - sl ||2)2.  This problem is therefore of the form (EQ 5), with E(x) given by
(EQ 4) with c = 0.  A significant fact about this special case is that the lower bound E(x)≥ 0 is
known.  If the lattice permits an assignment which exactly satisfies the distance matrix, then E(x)
= 0 for any optimal assignment.

7.  A Sample Test Problem

As initial test cases, the global optimization techniques described above can be applied to sev-
eral simple, tractable molecular structures for which the conformational space has been exhaus-
tively explored.  One such simple structure is butane, a system of four hydrocarbons which satisfy
the same characteristic folding models as do small peptides.  The 3-dimensionaltrans conforma-
tion for butane (the conformation with minimum energy) is well known and is shown in Figure 3.
In this case, since all of the molecules are actually identical hydrocarbons, the complexity of the
energy potential function should be reduced.  One energy potential function f(y), y∈ R9 (with
fixed θ1 = ϕ1 = ϕ2 = 0), for butane that has gained widespread acceptance is

where r14 is the distance between the first and fourth molecules (and is therefore completely
dependent on the variablesl, θ, andϕ), Kl = 310.0 kcal/ang2, Kθ = 40.0 kcal/rad2, V3/2 = 1.3 kcal,
ε14 = 0.06 kcal,σ14 = 3.6 ang (i.e. the well depth and location for the minimum of the lone Len-
nard-Jones pairwise term are 0.06 kcal and 3.6 ang, respectively),l0 = 1.526 ang, andθ0 = 70.5°
(recall that in this formulationθi represents the bond angle corresponding to the relative position
of the third bead with respect to the line containing the previous two).

Discretizing this problem using a 5x5x5 lattice with a uniform grid spacing of 1.4 ang, we get
the quadratic assignment problem (EQ 5) with 500 zero-one variables and 129 linear constraints.
Of course the equivalent concave quadratic global minimization formulation also requires 500
variables (although not restricted to be zero-one), but only requires one linear constraint (EQ 6)
and 500 upper and lower bounds on the values of the xij.  The terms pijkl  of energy function E(x)
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The original quadratic assignment problem (EQ 5) is therefore equivalent to the minimization
of a concave quadratic function on the unit hypercube with (possibly) the one linear equality con-
straint (EQ 6) and nN variables, each of which is restricted to the interval [0,1].  The global, or
near global, solution to this problem provides a convenient starting point for the "relaxed"local
minimization problem (EQ 1).

Two different computational methods for this class of problem have recently been developed.
The first such method finds the global minimum of a concave quadratic function on a polytope by
the use of linear underestimating functions (Phillips and Rosen 1988).  An important feature of
this method is that for every local minimum obtained, a bound is also computed which bounds the
difference between the local and (unknown) global minimum function values.  Furthermore, this
bound can be made as small as desired, at the cost of additional computation.   Some recent
improvements in this algorithm are described in Phillips and Rosen (1993).

The second method is essentially stochastic, and finds a large number of local minima by solv-
ing multiple cost row linear programs (Phillips, Rosen, and van Vliet 1992).  This method is very
well suited for parallel implementation because each local minimization can be performed as a
completely independent calculation.  A detailed computational comparison of these two methods
has recently been completed (Phillips and Rosen 1992) and shows that the first method is faster in
most cases, but the second method often gives additional useful information on local minima with
function values close to the global minimum.

The solution of the quadratic assignment problem via global minimization (EQ 8) will give
the conformation with the minimum potential energy over all possible conformationson the cho-
sen lattice.  Clearly the requirement that each bead must be located exactly at a lattice site is a
restriction on the allowable conformations, which may prevent attainment of the minimum energy
state.  Therefore the lattice minimization given by the solution of (EQ 8) is considered to be the
first stage of a two-stage process.  The second stage consists of eliminating the lattice restriction
and directly minimizing the potential energy function f(y) as described in section 2.  The key to
this second stage computation is that only a local minimization of f(y) is required starting with
y=y0, where y0 represents the minimum energy configuration obtained from the first stage.  This
second stage minimization is therefore an unconstrained local minimization with 3(n-1) variables
(recall thatθ1 = ϕ1 = ϕ2 = 0 are fixed).  Several efficient computational methods are available for
this purpose as well (Liu and Nocedal 1989; Nash 1985).

6.  Lattice Assignment to Satisfy a Distance Matrix

An important molecular structure problem, closely related to the molecular conformation
problem, is that of finding a configuration (although not necessarily a minimum energy one)
which satisfies a specified “distance matrix”.  The distance matrix consists of up to n(n-1)/2 posi-
tive quantitiesδik which specify the (approximate) distance between some, or all, pairs of ele-
ments ai and ak (e.g. amino acids, atoms, etc.) of the molecule (note that not all of the distances
between pairs need to be specified).  That is, the quantityδik, usually measured experimentally, is
the approximate “desired” distance between elements ai and ak.  Hence, the problem is to find a
lattice assignment of the elements ai, for i=1,...,n, which gives the “best fit” (in the least squares
sense) to the specified distance matrix.
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where pii = 0 since the direct contributions are already accounted for by the linear term.  For this
simpler case, the total potential energy can be written

where x∈ RN with zero-one elements xi, c∈ RN with elements di, and Q∈ RNxN is a real symmet-
ric matrix with elements pij.  This problem can therefore be stated in the form

where

.

5.  Concave Quadratic Global Minimization Formulation

The (discrete) quadratic assignment problem (EQ 5) can easily be shown to be equivalent to
the (continuous) minimization of a strictly concave quadratic function over a polytope.  In partic-
ular, letλmax be the maximum (real) eigenvalue of the matrix Q∈ R(nN)x(nN), and letµ = 1 +λmax.
Then, since (xij)2 = xij  (recall that xij ∈ {0,1}), the energy function E(x) can be rewritten as

(EQ 7)

where c' = c + (µ/2)e, and Q' = Q -µI is a symmetric negative definite matrix.  Note that E(x) =
E'(x).

It is well known that the global minimum of a strictly concave quadratic function is attained at
an extreme point of the feasible polytope (Rockafellar 1970).  By relaxing the integer restrictions
in the polytope P above to get the new polytope P' consisting of the constraints (EQ 2), (EQ 3),
and the bounds 0≤ xij ≤ 1 for i=1,...,n and j = 1,...,N, it is easy to see that the extreme points of P'
correspond to the feasible points of P.  Hence, a global minimum for the strictly concave quadratic
problem

(EQ 8)

will also be a global minimum of the discrete quadratic assignment problem (EQ 5).
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This analysis shows that the quadratic assignment problem (EQ 5) is equivalent to anuncon-
strained quadratic zero-one program.  One way to solve this is by a branch and bound method
applied directly to the quadratic zero-one program.  Several such methods are known, but proba-
bly the most efficient is one which uses bounds on the gradient components to fix many of the
zero-one variables at their optimal values early in the solution process (Pardalos and Rodgers
1990a; Pardalos and Rodgers 1990b)).

4.  A Simplified Assignment Problem

A simplified quadratic assignment problem can be formulated for the case where the linear
molecule consists of a total of nidentical elements.  For this simpler situation, the problem
reduces to assigning one element to each of exactly n selected lattice sites.  For a lattice with N
sites (N≥ n), this gives a total of only N zero-one variables xi, i=1,...,N.  If an element is assigned
to site sj, then xj = 1, otherwise xj = 0.

As in the more general case, the total potential energy consists of a linear and a quadratic
term.  The linear term, representing the direct energy contribution dj of an element assigned to site
sj, will be given by

.

The sum of the pairwise energy contributions pij, when two elements are assigned to sites si and sj,
gives the symmetric quadratic term

fik(r)

r
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FIGURE 2.
Lennard-Jones Pair Potential Function forεik  = σik  = 1
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and (EQ 3) can be enforced by simply assigning an appropriate penalty value to some of the off-
diagonal terms in Q.  Specifically, for a sufficiently large constantγ > 0, set pijil  = γ for all i, j, l
with j≠l, and pijkj  = γ for all i, j, k with i≠k.  The first of these will not allow xij and xil to both be
unity (i.e., bead ai can occupy at most one site).  The second of these will not allow xij and xkj to
both be unity (i.e., beads ai and ak cannot both occupy lattice site sj).  For each bead ai, there will
usually be a number of sites sj for which dij < 0, so that ai will be assigned to some lattice site.
Note that if this cannot be guaranteed, then the requirement that each bead be assigned toexactly
one lattice site could always be satisfied by adding the single constraint

(EQ 6)

Finally, in order to enforce the requirement that two consecutive beads ai and ai+1 remain
within an allowable distance of the required bond lengths (i.e. an approximate bond length
between two consecutive beads is typically known, but a small deviation from this value may be
permitted), the term pij(i+1)l  must be very large if the distance between lattice sites sj and sl is not
within an allowable tolerance.  For example, ifl i represents the approximate bond length between
beads ai and ai+1, then one possible choice is to let

whereβi is some constant that determines the penalty to be imposed for large deviations away
from l i.  Similarly, it may be desired to force a sequence of three consecutive beads to remain
within an allowable tolerance of a predetermined (i.e. fixed) bond angle.  Unfortunately, incorpo-
rating this component into thepairwise energy term pijkl  is not possible because of its dependence
on a sequence ofthree beads.  Hence, this potential requirement is not explored further in this
model.  Note, however, that such a requirement may be enforced during the second, or relaxed,
stage given by (EQ 1).

For all other terms pijkl  any appropriate energy potential function may be used.  One such
function of current interest is pijkl  = fik(rjl), where fik is called the Lennard-Jones pairwise potential
between the beads ai and ak, and rjl  is the distance between the lattice sites sj and sl.  The function
fik(r) has the following form:

where εik and σik are constants related to the two specific beads (e.g. amino acids) involved.
Notice that the minimum of fik(r) = -εik and is obtained at r =σik.  A plot of the function fik(r) for
εik = σik = 1 is given in Figure 2.  Also notice that the Lennard-Jones pair potential has the prop-
erty that pijkl  = pklij , since fik(rjl) depends only on the types and relative positions of the beads ai and
ak.
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preferred (hydrophobic beads might prefer to be more in the interior of the folded chain and hence
more in the center of the lattice structure, but this is by no means guaranteed).  The quadratic term

represents the “pairwise” contribution pijkl  to the total potential energy when the bead ai is
assigned to lattice site sj and bead ak is assigned to lattice site sl.  For example, if each bead repre-
sents an amino acid residue, then the pairwise Lennard-Jones potential energy (Fisher 1964)
between amino acids is a function of the types of the two amino acids and their distances apart in
the lattice structure.  That is, the term pijkl  depends only on ai, ak, and || sj - sl ||2.  Hence, it is con-
venient to write the total potential energy function in the quadratic form

(EQ 4)

where x∈ RnN denotes the zero-one vector with elements xij, c∈ RnN denotes the vector with ele-
ments dij, and Q∈ R(nN)x(nN) is a real symmetric (typically indefinite) matrix with elements pijkl .  It
follows that the 3-dimensional minimum energy conformation of the bead sequence restricted to
the discrete lattice structure is given by the solution to the followingquadratic assignment prob-
lem:

(EQ 5)

where P consists of constraints (EQ 2), (EQ 3), and the integer restrictions xij ∈ {0,1} for i=1,...,n
and j = 1,...,N.

Clearly, the usefulness of this approach is very heavily dependent on the selection of the
“proper” lattice structure, and on the choice of the most appropriate potential function.  In the
absence of any a priori knowledge about the folded structure of the molecule, the selection of the
best lattice structure can be extremely difficult.  Obviously, determining this “proper”, i.e. per-
fect, selection is as hard as the conformation problem itself.  Hence, it should be clear that a very
fine grained, but sufficiently large, lattice must be selected -- the exact structure of which could be
spherical, rectangular, or even random.  That the lattice might not allow for the global minimum
conformation, or even for anystable conformation at all, is not important.  The lattice restrictions
will be removed prior to the second stage of the method, and the “non-stable” conformer will be
used as a starting point for a local minimization in which the conformer is allowed to relax into a
stable “minimum” (albeit local) energy configuration.

The appropriate choice of the potential energy function is also a crucial factor in guiding the
search for conformers toward the minimum energy configuration.  As stated above, the energy
term pijkl  represents the pairwise contribution to the total potential energy when bead ai is assigned
to lattice site sj and bead ak is assigned to lattice site sl.  More specifically, the diagonal elements
of Q are zero, i.e. pijij  = 0 for i=1,...,n and j=1,...,N since the energy contribution of bead ai when
located at lattice site sj is already provided by the term dij.  Furthermore, the constraints (EQ 2)
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If y ∈ R3n-3 is defined to be the vector of (l i,θi,ϕi) triples for i=1,...,n-1 (whereθ1 = ϕ1 = ϕ2 = 0
can be assumed) and f(y) is an appropriate potential energy function, then thecontinuous global
minimization approach for solving the molecular conformation problem is simply

(EQ 1)

Because of the large number of state variables needed to define a minimum energy conformation
and the possibly exponential number of local minimizers which can occur on the energy surface
(Hoare 1979), a direct computation of the global minimum in this fashion is not practical.
Instead, the minimization can be carried out in two stages.  In the first stage the state variables are
discretized in order to form a 3-dimensional lattice.  A minimization over this discrete space pro-
vides a suitable starting point for the second stage.  In this second stage, the lattice restrictions are
relaxed, and a possibly lower energy function value may be obtained by a continuous minimiza-
tion with respect to the variables y.

3.  Quadratic Assignment Formulation

In order to formulate a discrete approximation to the molecular conformation problem, the
original continuous problem in 3-dimensional space is approximated by a discrete problem using
a suitable 3-dimensional lattice with N sites, N≥ n.  If sj represents lattice site j, for j=1,...,N, then
a total of nN zero-one variables xij are sufficient to completely determine the assignment of the
beads ai to the lattice sites sj.  More precisely, if xij  = 1, then ai is assigned to lattice site sj.  If xij  =
0, then ai is not assigned to lattice site sj.  Only two types of constraints are required:

1) Each bead must occupy exactly one lattice site.  Hence,

(EQ 2)

2) At most one bead occupies each lattice site sj, That is,

(EQ 3)

The objective function consists of both a linear and a quadratic term.  The linear term

represents the “direct” contribution dij to the total potential energy when the bead ai is assigned to
lattice site sj.  For example, the polarity (or lack of it) of bead ai might affect which lattice sites are
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1) for any specific molecular conformation, a corresponding potential energy function can be
computed, and

2) the native state corresponds to the global (or near global) minimum of this energy func-
tion.

These assumptions appear to be valid based on results for small proteins (Troyer and Cohen
1991).  Clearly, the success of such an approach will depend greatly on both the potential energy
function selected and on the method used to compute the global, or near global, minimum of a
function with potentially many local minima.  In this paper, the molecular conformation problem
is formulated so that it can be solved by a two stage approach.  The problem is first modeled by a
discrete approximation on a 3-dimensional lattice.  This discrete lattice model can be formulated
as a quadratic assignment problem and then transformed into acontinuous concave quadratic glo-
bal minimization problem.  The global solution to this concave minimization problem can then be
used as starting point for the second stage -- a "relaxed" continuous minimization problem.  The
result of this second stage should provide a global, or near global, minimum of the potential
energy function, and hence a prediction of the native, or folded, state of the linear molecule.  This
two-stage approach has been used successfully to find the minimum energy conformation for very
large problems based on a much simpler molecular model (Maier, Rosen, and Xue 1992; Xue
1992; Xue, Maier, and Rosen 1992).

2.  The Molecular Conformation Problem

In the string of beads model, the molecule to be folded consists of a linear sequence of n beads
a1,a2,...,an, where ai denotes the ith bead in the primary sequence.  For every pair of consecutive
beads ai and ai+1, let l i be the bond length representing the distance between them.  Also, for every
three consecutive beads ai-1, ai, and ai+1, let θi represent the bond angle corresponding to the rela-
tive position of the third bead with respect to the line containing the previous two.  Likewise, for
every four consecutive beads ai-2, ai-1, ai, and ai+1, let ϕi represent the torsion angle corresponding
to the relative position of the fourth bead with respect to the plane containing the previous three.
Hence, the molecular conformation problem is to determine a set of bond lengthsl i, i=1,...,n-1,
bond anglesθi, i=2,...,n-1, and torsion anglesϕi, i=3,...,n-1, which properly represent the native
state of the molecule.  See Figure 1 for an example.
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a1

FIGURE 1.
Native Conformation for a Four “Bead” Sequence
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1.  Introduction

It is generally agreed that one of the most important, and difficult, problems in molecular bio-
physics and biochemistry is the protein folding problem (Gierasch and King 1990). The protein
folding problem, simply stated, is as follows:

Given a known primary sequence of amino acids, predict its native, or folded, state
in 3-dimensional space.

That is, can one predict how newly made proteins -- which resemble loosely coiled strands and
are typically inactive in their unfolded configurations -- will "fold" into specifically shaped balls
able to perform crucial tasks in a living cell?  The solution to this problem is of more than aca-
demic interest.  Many major hoped-for products of the biotechnology industry are novel
proteins.  It is already possible to design genes to direct the synthesis of such proteins, yet failure
to fold properly, which greatly determines the functionality of the protein, is a important produc-
tion concern.

The value of computation of protein folding patterns is that although it is now quite simple to
determine the precise amino acid sequence of a protein from DNA sequence analysis, such an
analysis provides no information as to what the native (i.e. folded) 3-dimensional structure of the
protein might be, and thus which amino acid residues in the protein might be next to which other
amino acid residues. Knowledge of such 3-dimensional structures could be of great help in deter-
mining the nature of sites on a protein that might be involved in enzyme action or binding to other
proteins, membranes, DNA, small molecules, etc.  Currently the 3-dimensional structure of pro-
teins can only be ascertained from X-ray crystallography analysis, an expensive and time-con-
suming process that moreover requires a protein to be pure and then to be crystallized -- not an
easy process.  The shortcut of direct computation has long been appealing, since it is fairly well
documented that the primary structure (the sequence of amino acids) completely determines the
secondary and tertiary structures (short and long range folding patterns) of the protein.  Further-
more, the process of folding is spontaneous subsequent to the biosynthesis of the protein, and
should be predicted from the sequence based on energy minimization considerations.

Unfortunately, direct computation of the native state of a protein, in the absence of any simpli-
fying assumptions, has proven to be an intractable problem for all but the smallest of proteins.
While many computational simplifications are possible (Troyer and Cohen 1991), one simple and
popular approach is to model each complex amino acid residue as a single “sphere” centered on
the Cα carbon position, and to model each peptide linkage between residues by a virtual bond
between spheres.  This Cα force field, or “string of beads”, model ignores the secondary structure
of each residue, information which might well be a factor in determining the native state.  Hence,
it is clear that a computational solution to this simplified “molecular conformation problem” does
not in itself solve the protein folding problem; however, this general approach easily allows global
optimization techniques to be applied, and could be useful in a more general set of “minimum
energy conformation” applications.

Hence, this paper presents a novel approach for predicting the native structures of a linear
sequence of beads (residues, in the case of protein folding).  This approach is based on two impor-
tant assumptions:
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